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Abstract. We present a new algorithm for automated negotiation,
called BINGO, that we designed specifically for the main league
of the Automated Negotiating Agents Competition of 2024 (ANL
2024). This means it was designed for negotiations that take place
over a fixed number of rounds and in which the agents are fully aware
of each others’ utility functions, but in which their reservation values
are kept private. Our algorithm is based on the principle of backward
induction, combined with the assumption that the belief each agent
holds about its opponent’s reservation value can be modeled as a
uniform probability distribution. We present an experiment in which
BINGO negotiated against all finalists of ANL 2024 and we show
that BINGO outperformed all of them. Furthermore, we present a
number of theoretical results for so-called split-the-pie scenarios.

1 Introduction

The field of automated negotiation deals with the question of how
two or more self-interested agents with conflicting goals can negoti-
ate to find agreements that are mutually beneficial. The challenge for
a negotiating agent is to find the right balance between demanding a
high utility for itself on the one hand, and conceding enough to its
negotiation partner to make them willing to accept the deal, on the
other hand [8]. A typical example is the case where a buyer and a
seller bargain over the price of a second-hand car.

To promote research on this topic, the annual Automated Negoti-
ating Agent Competition (ANAC) has been organized since 2010 [5]
and has since become the default benchmark for negotiation algo-
rithms. Throughout the years it has dealt with various different sce-
narios with different characteristics. For example, it involved settings
in which agents were able to learn from previous negotiation ses-
sions [13, 24], negotiations with extremely large offer spaces [11],
multilateral negotiations [12], and negotiations in which the agents
only have partial knowledge about their own utility functions [2].
Furthermore, since 2017 ANAC has been extended with a number
of additional ‘leagues’ focused on more specific challenges, such as
the game of Diplomacy [10], supply chain management [20], nego-
tiations between computers and humans [19] and the game of Were-
wolves [2]. Since then, the main league of ANAC has been referred
to as the Automated Negotiations League (ANL), to distinguish it
from these additional leagues.
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Thus far, however, in all previous editions of ANAC it was al-
ways assumed that each agent only knew its own utility function,
while the utility function of its opponent was hidden.1 In this sense,
ANL 2024 involved a major change. This time, the agents’ respective
utility functions were common knowledge, and instead only their so-
called reservation values were considered private (i.e. the amount of
utility each agent receives when the negotiations fail). Another major
change with respect to most (but not all) previous editions of ANL,
was that the agents were not only limited by a temporal deadline, but
also by a maximum number of proposals [3].

Although some might argue that the these changes make the com-
petition less realistic, they do make it more suitable for mathemati-
cal analysis, which makes it more interesting from a theoretical per-
spective. Indeed, it should be noted that for this reason many similar
problems have been studied in the past.

For example, the problem how to find the theoretically optimal
deal under full information but without any limitation on the number
of proposals has been solved for various different settings [22, 26, 7].
Similarly, several authors studied negotiations under full informa-
tion but with a fixed number of negotiation rounds. For example, Di
Giunta and Gatti [16] used backward induction together with convex
programming techniques to determine the subgame perfect equilib-
rium in such a scenario. Similarly, Sloof [27] studied a split-the-pie
bargaining scenario in which a new pie is divided in every round and
Busch and Wen [6] studied a scenario in which, after each rejection,
the two agents played a one-shot ‘disagreement game’.

Finally, several authors studied negotiations with a fixed number
of rounds and full information about the opponent’s utility functions,
but with limited information about other parameters. For example,
Di Giunta and Gatti [15] and Gatti et al. [14] studied negotiations
in which one of the two agents did not know the individual deadline
of its opponent. They used backward induction to find an optimal
strategy and showed that (in combination with a certain belief-update
rule) it forms a sequential equilibrium. Furthermore, An et al. [1] pre-
sented a negotiation algorithm for scenarios with private reservation
values, but they assumed negotiations between a single buyer and
multiple sellers, and they assumed the reservation values could only
take two possible values. They did also discuss a generalization for
more than two possible reservation values, but it remained unclear
whether their algorithm can be implemented efficiently and they did
not present any experiments.

1 Or, in the case of Diplomacy, computationally too complex to calculate.
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In this paper we present a new agent, called Backward Induction
NeGOtiator (BINGO) that we designed specifically for the setup of
ANL 2024. To the best of our knowledge, the exact settings of ANL
2024 have never been studied before, so the agents that participated
in ANL 2024 are the state-of-the-art and are in fact the only existing
agents that BINGO can be compared with.

It is striking that all agents that reached the finals of this compe-
tition were based either on heuristics or on machine learning tech-
niques.2 In fact, the runner-up of the competition, UOAgent, even
followed a purely time-based strategy. BINGO is therefore unique in
the sense that it is the only agent that tries to make optimal proposals
based on theoretical principles. One participant, called AntiAgent,
did also use backward induction, but in addition relied on a machine
learning approach to estimate the opponent’s reservation value.

We have made the source code of BINGO publicly available at:
https://www.iiia.csic.es/~davedejonge

2 Negotiations in ANL 2024
We here describe the setup of ANL 2024 (i.e. the main league of
ANAC 2024). The negotiations in this competition can be formally
modeled as a turn-taking game with imperfect information.

In this competition, each participant had to implement a negoti-
ating agent. All submitted agents then had to negotiate against each
other in a large number of different scenarios. The winner would be
the one that achieved the highest average utility over all these nego-
tiations.

Each scenario consisted of the following components (which we
will explain in more detail below): two agents, which we denote by
α1 and α2 respectively. A finite set of possible offers Ω, called the
offer space. Two utility functions u1 and u2 for the two respective
agents: ui : Ω → [0, 1]. Two reservation values r1, r2 ∈ [0, 1]
for the two respective agents. A positive integer N indicating the
number of rounds in the negotiation. And finally, a temporal dead-
line T . In each of these scenarios the two agents α1 and α2 were
drawn from the pool of agents submitted by the participants.

2.1 Negotiation Protocol

In each scenario, the two agents had to negotiate with each other ac-
cording to the alternating offers protocol (AOP) [25]. This means
the agents had to take turns in the negotiations. Specifically, it means
the negotiations proceeded as follows. In Round 1, the agent whose
turn it is (say agent α1), can pick any offer ω from the set of offers
Ω and propose it to the other agent. Next, in Round 2, it is then the
other agent’s turn (agent α2). She first needs to decide whether to ac-
cept or to reject the proposal she received in Round 1. If she accepts,
then the negotiations are over. If she rejects, then she can make a
counter-proposal. That is, α2 can select another offer ω′ from Ω and
propose it to α1. Then, in Round 3, it is α1’s turn again, so now α1

needs to decide whether to accept or to reject the proposal ω′ she
received in Round 2. If she accepts, then the negotiations are over.
If she rejects, then she can propose a new offer to α2. Etcetera. The
negotiations can end in either of the following three ways: 1) Either
of the two agents accepts a proposal. 2) After N rounds neither of
the two agents has accepted any proposal. 3) The negotiations have
lasted more than T seconds. In the first case, the agents α1 and α2

receive the respective utility values u1(ω) and u2(ω) corresponding
to the accepted offer ω and their respective utility functions u1 and

2 We know this because every participant wrote a short report detailing their
strategy.

u2. In this case we say the accepted offer ω has become an agree-
ment. In the other two cases, however, the negotiations end without
agreement, and the respective utility values received by the agents
equal their respective reservation values r1 and r2.

For each agent submitted to the competition, its score was calcu-
lated by taking the average over all negotiations in which it partic-
ipated, of the utility it received minus its reservation value. In each
scenario of ANL 2024, the size of the offer space was between 900
and 1100 offers, and the number of rounds N varied between 10 and
10,000. The temporal deadline was always set to T = 180 seconds.

In the rest of this paper, for any given round n, we refer to the
agent whose turn it is in that round as the active agent of round
n and we refer to the other agent as the passive agent of round n.
Furthermore, we will refer to α2 as the opponent of α1, and vice
versa. We may use the notation αi as a variable to refer to either of the
two agents, and in that case the notation α−i refers to the opponent
of αi. Similarly, ui and ri refer to the utility function and reservation
value of αi, and u−i and r−i are the corresponding quantities for
α−i.

2.2 Reservation Values

The importance of the reservation values, is that for each agent its
reservation value is the minimum utility she is already guaranteed to
receive, even without coming to an agreement. Therefore, a rational
agent would never accept any offer that yields less utility than her
reservation value.

In ANL 2024 each agent had full knowledge of the negotiation
scenario, except for the opponent’s reservation value. That is, each
agent αi knew its own utility function ui and reservation value ri,
as well as the opponent’s utility function u−i, but not the opponent’s
reservation value r−i. However, the agents did have access to the
knowledge that each agent’s reservation value ri was drawn from a
uniform probability distribution3 over the interval [0, b1i ] with:

b1i = ui(ω
pm)− ϵ (1)

where ϵ is a small constant and ωpm is the ‘product maximizing’
offer: ωpm := argmaxω∈Ω u1(ω) · u2(ω). The reason for the su-
perscript 1 in the notation b1i will become clear later.

3 Belief Update
As explained, the agents in ANL 2024 did not know each other’s
reservation values. However, the idea behind BINGO is that we as-
sume that each agent does have a belief about its opponent’s reser-
vation value, which we model as a probability distribution. That is,
let Pn

i (x) denote the probability density that α−i assigns, in round n
of the negotiations, to the the hypothesis that αi’s reservation value
equals x (i.e. the probability that ri = x). Furthermore, we assume it
is common knowledge among the agents that each reservation value
ri was drawn uniformly from an interval [0, b1i ], with b1i as defined
by Eq. (1). So, for the initial beliefs P 1

i , we have:

P 1
i (x) =

{
1
b1i

if x ∈ [0, b1i ]

0 otherwise

These beliefs may be updated throughout the negotiations, based on
the proposals the agents receive from each other.

3 While this was not explicitly communicated to the participants, it could be
found in the source code of the tournament software which was available
to the participants.
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In addition, we assume that the agents are perfectly rational, and
that each agent assumes its opponent is perfectly rational. This im-
plies that whenever an agent αi proposes an offer ω, its opponent will
know that αi’s reservation value ri must be below αi’s utility value
for ω. That is: ri < ui(ω). The agents may therefore use this infor-
mation to update their beliefs. There are many ways how one could
do this, but for our implementation of BINGO we assumed that the
belief Pn

i always remains a uniform distribution, and that only the
upper bound of its support (which we will denote by bni ) is adapted
to equal the minimum utility demanded by the opponent so far. That
is, at any round n of the negotiation, α−i’s belief is given by:

Pn
i (x) =

{
1
bni

if x ∈ [0, bni ]

0 otherwise
(2)

where bni is given by:

bni := min {ui(ω) | ω has been proposed by αi} ∪ {b1i } (3)

We should stress that BINGO is based on the assumption that both
agents update their beliefs according to Eqs. (2) and (3), and there-
fore that the values bn1 and bn2 are common knowledge. In other words,
each agent αi knows the belief that the other agent α−i holds about
αi’s reservation value ri. Of course, this assumption will typically
not hold, unless BINGO negotiates against itself, but we will see
later that our experiments show BINGO still works very well, even
when it negotiates against other agents.

4 Backward Induction

We are now ready to present BINGO. It uses a well-known technique
from game theory, called backward induction [23], to determine for
each round of the negotiation whether or not the active agent should
accept the previous proposal and, if not, which offer it should then
propose. Specifically, it starts by determining the best action for the
last round (round N ), and then, knowing this, it works its way back-
wards, by next determining the best action for round N − 1, then the
best action for round N − 2, etcetera.

In the rest of this paper we will assume, w.l.o.g. that agent α2 is
the active agent in round N . This implies that α2 is also the active
agent is any round N − j where j is an even number and that α1 is
the active agent in any round N − j where j is an odd number.

We will use the predicate acc(i, ω, n), with i ∈ {1, 2}, ω ∈ Ω, and
n ∈ {1, 2, . . . , N}, to denote that agent αi would accept an offer ω
in round n. Alternatively, we may also just write “αi accepts” if the
offer and round are clear from context. Furthermore, we may write
“αi rejects” to indicate that αi would not accept the offer. We will
use the notation ωn to denote the offer proposed in round n.

Furthermore, for any offer ω, round n, and agent αi we will define
the notion of the anticipated utility, which is the utility that agent
αi can expect to receive at the end of the negotiations, given that she
proposes or receives the offer ω in round n. We use the notation Un

a

to denote the anticipated utility for the active agent in round n and
Un

p to denote the anticipated utility for the passive agent in round
n. We may use the term direct utility to refer to the ordinary utility
functions ui that are given with the negotiation scenario, to stress
that we are not talking about anticipated utility.

The idea is that BINGO always proposes the offer that maximizes
the anticipated utility, unless the direct utility of the offer it just re-
ceived is even higher (or equal), in which case BINGO would accept
that offer.

4.1 Round N

The optimal strategy for α2 in the last round is simple: accept the
last offer proposed by the opponent (denoted ωN−1) if and only if its
direct utility lies above α2’s reservation value:

acc(2, ωN−1, N) ↔ r2 < u2(ω
N−1) (4)

It is important to note here that ANL 2024 did not allow agents
to learn or collect data between negotiation sessions. Each negotia-
tion was entirely independent from every other negotiation. This is
important because otherwise it could sometimes be better for α2 to
reject offer ωN−1 even if its utility is strictly above r2, since this
could force the opponent to concede more in future negotiations.

Note that in round N , if α2 does not accept the proposal, then it is
not necessary to determine which offer to propose instead, because
the negotiations are already finished anyway.

4.2 Round N − 1, agent α1

In the second-last round of the negotiations (round N − 1), agent α1

is the active agent. To determine the best offer for α1 to propose in
this round we need to calculate the anticipated utility for all offers
ω ∈ Ω, and then select the offer that maximizes this value.

Let ω be any arbitrary offer. Suppose that in round N − 1 agent
α1 proposes this offer ω. This means that in the final round the other
agent α2 will accept this proposal iff r2 < u2(ω), while the nego-
tiations will end without agreement otherwise. Therefore, given the
reservation values r1, r2 we can, for any offer ω, define the antici-
pated utility for α1 as:

UN−1
a (ω, r1, r2) =

{
u1(ω) if r2 < u2(ω)

r1 otherwise
(5)

However, α1 cannot use this directly to select the best offer, be-
cause it requires knowledge of the opponent’s reservation value r2.
Therefore, we first need to calculate the expected anticipated utility
EUN−1

a , by integrating over all possible values of r2:

EUN−1
a (ω, r1, b

N−1
2 ) =

∫ 1

0

PN−1
2 (r2) · UN−1

a (ω, r1, r2) · dr2
(6)

Recall from Section 3 that α1’s belief about r2 in round N − 1, is
given by a uniform probability distribution PN−1

2 over the interval
[0, bN−1

2 ]. To simplify notation we will below just write b2 instead of
bN−1
2 .

To calculate this integral, we have to distinguish between the fol-
lowing two cases:

u2(ω) ∈ [0, b2] and u2(ω) ∈ [b2, 1]

In the first case the expected anticipated utility can be calculated by
plugging Eqs. (2) and (5) into Eq. (6), to get:

EUN−1
a (ω, r1, b2) =

1

b2

∫ b2

0

UN−1
a (ω, r1, r2) · dr2

=
1

b2

∫ u2(ω)

0

u1(ω) · dr2 +
1

b2

∫ b2

u2(ω)

r1 · dr2

=
1

b2
· u2(ω) · (u1(ω)− r1) + r1

On the other hand, in the second case we know that u2(ω) is certainly
greater than r2, and we have seen in Section 4.1 that this means that



α2 will certainly accept the offer, so α1 will certainly receive the
utility value u1(ω). So, in that case we have:

EUN−1
a (ω, r1, b2) = u1(ω)

Combining the two cases we have:

EUN−1
a (ω, r1, b2) ={

1
b2

· u2(ω) · (u1(ω)− r1) + r1 if u2(ω) ≤ b2

u1(ω) otherwise
(7)

Now, given α1’s reservation value r1 and an upper bound b2 for
α2’s reservation value, we can find the optimal offer ω∗N−1 for α1 to
propose in round N−1 by maximizing over the expected anticipated
utility:

ω∗N−1 := ON−1(r1, b2) := argmax
ω∈Ω

EUN−1
a (ω, r1, b2) (8)

Here, we use the notation ON−1 to denote the function that calcu-
lates the optimal offer, while we use ω∗N−1 to denote the optimal
offer itself. That is, ω∗N−1 is the output of the function ON−1.

However, before proposing this offer, α1 should first decide
whether or not to accept the offer ωN−2 it received in the previous
round. BINGO will accept if and only if the direct utility of ωN−2

is greater than the expected anticipated utility of the offer ω∗N−1 it
would otherwise propose:

acc(1, ωN−2, N − 1) ↔ EUN−1
a (ω∗N−1, r1, b2) < u1(ω

N−2)

↔ max
ω∈Ω

EUN−1
a (ω, r1, b2) < u1(ω

N−2)

4.3 Round N − 1, agent α2

Let us now calculate the anticipated utility UN−1
p that α2 assigns

to the situation that α1 proposes its optimal offer ω∗N−1 in round
N − 1. This quantity will turn out important in Section 4.4.

If α1 indeed proposes ω∗N−1, then α2 will receive u2(ω
∗N−1) if

she accepts that offer in round N , and r2 if she rejects it. Thus:

UN−1
p (r1, r2, b2) =

{
u2(ω

∗N−1) if α2 accepts
r2 if α2 rejects

Since we know from Section 4.1 that α2 accepts it if and only if
r2 < u2(ω

∗N−1), this becomes:

UN−1
p (r1, r2, b2) =

{
u2(ω

∗N−1) if r2 < u2(ω
∗N−1)

r2 otherwise
(9)

which can also be written as:

UN−1
p (r1, r2, b2) = max { u2(ω

∗N−1) , r2 }

Note that while the quantities r1 and b2 do not appear on the right-
hand side explicitly, the expression does depend on them implicitly
because ω∗N−1 depends on them through Eq. (8).

4.4 Round N − 2

Now, let us show how to determine the optimal offer ω∗N−2 for α2

to propose in turn N−2, assuming that in round N−1 the opponent
α1 will follow the strategy given in Section 4.2.

We follow the same recipe as above. That is, we first find an ex-
pression for the anticipated utility UN−2

a of α2, for any arbitrary
offer ω and any arbitrary reservation values. We then integrate over
all possible values of r1, and finally find the offer that maximizes this
quantity.

Again, let ω be any arbitrary offer. If, in round N−2, agent α2 pro-
poses ω and in round N − 1 agent α1 accepts it, then α2 will receive
its corresponding utility value u2(ω). On the other hand, if α1 rejects
it, then α1 will propose her optimal offer ω∗N−1, so α2 will receive
the expected anticipated utility corresponding to that scenario, which
is given in Section 4.3. Thus:

UN−2
a (ω, r1, r2, b

N−2
2 ) =

{
u2(ω) if α1 accepts.
UN−1

p (r1, r2, b
N−1
2 ) if α1 rejects.

(10)
It is important to note here, that bN−2

2 represents the belief that α1

holds in round N −2, about r2, while bN−1
2 represents α1’s belief in

round N −1, which is after α2 has proposed the offer ω. This means
that, according to to Eq. (3) these two quantities are related by the
following equation:

bN−1
2 = min { bN−2

2 , u2(ω) }

Of course, α1 will only accept an offer ω if it yields at least as
much as what she expects to receive if negotiations continue, which
we calculated in Section 4.2. So we have:

α1 accepts ↔ EUN−1
a (ω∗N−1, r1, b

N−1
2 ) ≤ u1(ω) (11)

Similar as above, we can then calculate the expected anticipated
utility of α2 (we use b1 and b2 as shorthands for bN−2

1 and bN−2
2 ):

EUN−2
a (ω, r2, b1, b2) =

1

b1

∫ b1

0

UN−2
a (ω, r1, r2, b2) · dr1

And finally, the optimal offer ω∗N−2 is then determined as the one
that maximizes the expected anticipated utility of α2:

ω∗N−2 := ON−2(r2, b1, b2) := argmax
ω∈Ω

EUN−2
a (ω, r2, b1, b2)

4.5 Round n

We will now generalize the previous sections to arbitrary rounds.
That is, we will show how, for any n ∈ {1, 2, . . . , N}, we can de-
termine the optimal offer ω∗n to be proposed by the active agent of
round n.

In the previous sections we have introduced the following opera-
tors: Un

a , EUn
a , U

n
p , and On, which each depend on (some of) the

following five parameters: ω, r1, r2, bn1 , and bn2 . We will first define
these operators for n = N and then provide the recursion relations
that allows us to calculate them for any n with n < N .

Note that UN
a is defined as the utility that α2 would receive

when she proposes some given offer ω in the last round. However,
since it is the last round, this offer cannot get accepted, and there-
fore the utility that α2 receives is her reservation value. We there-
fore have:4 UN

a (ω, r1, r2, b
N
1 , bN2 ) = r2 for any offer ω. For the

same reason, her expected utility will also be her reservation value:
EUN

a (ω, r1, b
N
1 , bN2 ) = r2. And similarly, for agent α1 the utility

4 Note that we include all parameters on which Un
a depends, for general n,

even though for the particular case of n = N it only depends on r2. In this
subsection we do the same for the other operators.



she receives whenever α2 does not accept in round N is given by:
UN

p (r1, r2, b
N
1 , bN2 ) = r1.

Given these initial equations, we can now recursively calculate
Un

a , EUn
a , U

n
p , and On for all rounds n as follows (here, αi always

denotes the active agent of round n, and α−i the passive agent of
round n):

Un
a (ω, r1, r2, b

n
1 , b

n
2 ) :={

ui(ω) if acc(−i, ω, n+ 1)

Un+1
p (r1, r2, b

n+1
1 , bn+1

2 ) otherwise

where ω can be any arbitrary offer and where, by Eq. (3):

bn+1
i := min{bni , ui(ω)} and bn+1

−i := bn−i

Furthermore, note that acc(−i, ω, n + 1) and Un+1
p are determined

by the equations below.

EUn
a (ω, ri, b

n
1 , b

n
2 ) :=

1

bn−i

∫ bn−i

0

Un
a (ω, r1, r2, b

n
1 , b

n
2 ) dr−i

where ω can be any arbitrary offer.

ω∗n := On(ri, b
n
1 , b

n
2 ) := argmax

ω∈Ω
EUn

a (ω, ri, b
n
1 , b

n
2 )

Un
p (r1, r2, b

n
1 , b

n
2 ) :={

u−i(ω
∗n) if acc(−i, ω∗n, n+ 1)

EUn+1
a (ω∗n+1, ri, b

n+1
1 , bn+1

2 ) otherwise

where bn+1
i := min{bni , ui(ω

∗n)} and bn+1
−i := bn−i.

Finally, in any round n with n > 1, BINGO will accept the offer
ωn−1 it received in round n − 1, if and only if its utility is greater
than or equal to the expected anticipated utility associated with the
optimal offer ω∗n that BINGO would otherwise propose. That is:

acc(i, ω, n) ↔ EUn
a (ω

∗n, ri, b
n
1 , b

n
2 ) < ui(ω)

It is interesting to note that, despite the fact that an agent αi ex-
actly knows her own reservation value ri, her optimal offers do not
only depend on ri itself, but also on the upper bound bi for her own
reservation value. This is because αi’s optimal proposal depends
on which actions her opponent α−i is going to take in the coming
rounds, which in turn depend on α−i’s belief about αi’s reservation
value.

5 Theoretical Results
In this section we will present a number of theoretical results related
to BINGO and the scenarios of ANL 2024.

The fact that the agents do not know each others’ reservation val-
ues means that the agents are playing a game of incomplete informa-
tion. The appropriate equilibrium concept for such games is known
as sequential equilibrium [18]. This means there is not only an equi-
librium among the agents’ strategies, but also between their respec-
tive beliefs about each other’s types. Unfortunately, however, it is
well-known that calculating such equilibria is a very hard problem
and existing approaches to find such equilibria only work for sim-
ple toy-world games [17]. It would therefore seem intractable to find
such equilibria for the ANL 2024 scenarios, and so we leave it as an
open conjecture that BINGO forms a sequential equilibrium.

Conjecture 1. When the two agents both apply BINGO their joint
strategies and beliefs form a sequential equilibrium.

However, if we ignore the agents’ freedom to choose their own
belief update rules and instead assume that they would all use the
same belief update rules as BINGO, then the game reduces to an
ordinary game of full information, so we can obtain the following
result.

Theorem 1. If we make the assumption that all agents follow the be-
liefs given by Eqs. (1)-(3) then BINGO vs. BINGO forms a subgame
perfect equilibrium.

Proof. Under the given assumption, the agents’ uncertainties about
their respective reservation values become common knowledge and
therefore the uncertainty about whether or not any given offer will
be accepted can be modeled as an ordinary random variable with
a commonly known probability distribution. Under this model, the
negotiations become a non-deterministic game of full information
and for such games the subgame perfect equilibrium can be found by
backward induction [23], which is exactly what BINGO does.

In general, the equations from Section 4 are too difficult to solve
analytically, especially since the utility functions ui may take many
different forms. However, we will show that for a simple type of
scenario known as a ‘split-the-pie’ scenario, at least for rounds N−1
and N − 2 we can find explicit expressions for the optimal offers to
propose.

Definition 1. A split-the-pie scenario is a negotiation scenario for
which we have u1(ω) + u2(ω) = 1, for every offer ω ∈ Ω. Further-
more, we say it is an idealized split-the-pie scenario if, in addition,
we have that for any x ∈ [0, 1] there exists some ω ∈ Ω such that
u1(ω) = x.

Note that around 25% of the scenarios used in the ANL 2024 com-
petition were split-the-pie scenarios. Of course, these scenarios were
non-idealized, because such scenarios would have an infinite number
of offers.

For the theorems below to hold exactly, we need to make the fur-
ther assumption that ϵ ≤ 1

2
r1 in Eq. (1), which is indeed very likely

to be true, since ϵ is sure to be very small.

Theorem 2. For any idealized split-the-pie scenario, the optimal
offer ω∗N−1 for agent α1 to propose in round N − 1, is the one
for which u1(ω

∗N−1) = 1
2
+ 1

2
r1, unless α2 has earlier already

proposed one or more offers with higher utility for α1, in which case
α1 should just accept or re-propose the best such offer.

Note that a similar result was also found in [4], but under different
assumptions.

Proof. Starting from Eq. (7) and using the fact that in split-the-pie
scenarios we have u2 = 1− u1, we get the following expression:

EUN−1
a (ω, r1, b2) ={
1
b2

· (1− u1(ω)) · (u1(ω)− r1) + r1 if 1− b2 ≤ u1(ω)

u1(ω) otherwise
(12)

It is then easy to show, using straightforward algebra (see Ap-
pendix A of the supplementary material of this paper [9]), that the
offer ω∗N−1 that maximizes this quantity is the one that satisfies:

u1(ω
∗N−1) = max { 1

2
+

1

2
r1 , 1− b2 } (13)



To interpret this equation, let us define ωmin to be the offer with
lowest utility for α2 that has so far already been proposed by α2:

ωmin := argmin {u2(ω) | ω has been proposed by α2} (14)

Now, recall that b2 is shorthand for bN−1
2 , so by Eq. (3) we have

b2 = min{u2(ωmin), b
1
2}. Furthermore, note that for idealized split-

the-pie scenarios we have b12 = 1
2
− ϵ (by Eq. (1)), so we have

b2 = min{u2(ωmin) ,
1
2
− ϵ} which means 1 − b2 = max{1 −

u2(ωmin) ,
1
2
+ ϵ} and because we are talking about a split-the-pie

scenario: 1 − b2 = max{u1(ωmin) ,
1
2
+ ϵ}. Combining this with

Eq. (13) we get:

u1(ω
∗N−1) = max { 1

2
+

1

2
r1 , u1(ωmin) ,

1

2
+ ϵ }

= max { 1

2
+

1

2
r1 , u1(ωmin) }

Here we used our assumption that ϵ ≤ 1
2
r1, but it is easy to see

that without this assumption, the result would still be approximately
correct, as long as ϵ is very small.

So, we have shown that α1 will propose an offer with utility 1
2
+

1
2
r1, unless the offer ωmin that she has already received from α2

is actually better for her, in which case ωmin is the optimal offer.
Furthermore, combining the definition of ωmin (Eq. (14)) with the
fact that we are talking about a split-the-pie scenario, we get:

ωmin = argmax {u1(ω) | ω has been proposed by α2}

which means that, from the point of view of α1, offer ωmin is indeed
the best offer she has received.

Theorem 3. In a split-the-pie scenario, in round N − 2, any offer
that satisfies u2(ω) > max{r2, 1

2
} is optimal.

The proof can be found in Appendix B of the supplementary ma-
terial of this paper [9].

6 Implementation
We here discuss the implementation of BINGO. We should stress,
however, that we here just present a naïve version of the implemen-
tation, while the real implementation involves a number of optimiza-
tions to make the code more efficient. We discuss some of these op-
timizations at the end of this section. We have implemented BINGO
in Python, on the NegMas platform [21], which is the platform on
which the ANL 2024 competition was run.

6.1 Calculations

Since the equations in Section 4 are generally too hard to solve an-
alytically, BINGO instead solves them numerically. We will see that
the accuracy of these calculations depends on a parameter K. The
higher its value, the more accurate the calculations, but the slower
the algorithm will be and the more memory it will need. So, we had
to select the highest value of K that still allowed us to run our exper-
iments on our hardware, within the time limits of the competition.
After some trial-and-error we found this value to be K = 50 (but
this of course this number can be different if one uses different hard-
ware).

Given this parameter we define:

RK :=
{
0 ,

1

K
,

2

K
, . . . ,

K − 1

K
, 1

}
.

At the beginning of the negotiations, BINGO starts by creating a
3-dimensional array of size |Ω| × (K + 1)2 and filling it with the
values of UN−1

a (ω, r1, r2), as given by Eq. (5), for all offers ω ∈ Ω
and all possible values of r1, and r2 in RK .

Next, BINGO creates another 3-dimensional array to store the val-
ues of EUN−1

a (ω, r1, b
N−1
2 ) for all offers ω ∈ Ω and all possible

values of r1 and bN−1
2 in RK . Instead of performing the actual inte-

gral of Eq. (6), the values of EUN−1
a are approximated by summing

UN−1
a (ω, r1, r2) over the possible values of r2 in RK , between 0

and bN−1
2 . That is:

EUN−1
a (ω, r1, b

N−1
2 ) ≈ 1

k′

k′∑
k=0

UN−1
a (ω, r1,

k

K
) (15)

where k′ is the largest integer satisfying k′

K
≤ bN−1

2 .
Then, BINGO creates a 2-dimensional array to store the optimal

offers ON−1(r1, b
N−1
2 ) for each possible value of r1 and bN−1

2 in
RK , calculated according to Eq. (8). Finally, BINGO creates another
3-dimensional array to store the values of UN−1

p , for all possible
values of r1, r2, and bN−1

2 in RK , according to Eq. (9).
This can then, in principle, be repeated for rounds N − 2, N − 3,

etcetera, using the equations of Section 4.5. However, we have con-
figured BINGO to stop doing this once it has finished its calculations
for round N − 3, because it would take too much time and memory
to continue any further.

Note that if BINGO is α1 then it knows the exact value of its
own reservation value r1. Nevertheless, it still needs to calculate
ON−1(r1, b

N−1
2 ) for all possible values of r1 in RK . This is be-

cause these values are required for the calculation of EUN−2
a , which

is calculated from the point of view of agent α2, which does not know
r1. And the values of EUN−2

a are in turn necessary for BINGO to
calculate its optimal offer during round N − 3.

In order to check that BINGO was implemented correctly, we ver-
ified that, in split-the-pie scenarios, the optimal offers ω∗N−1 and
ω∗N−2 calculated by BINGO were indeed very close to the theoret-
ically optimal offers as determined in Section 5. Specifically, we ob-
served that the relative difference between the calculated values and
the theoretically predicted values was almost never greater than 2%.
The fact that these values are not perfectly equal can be attributed to
the fact that the split-the-pie scenarios were non-idealized, plus the
fact that the accuracy of the algorithm is limited by the parameter K.

6.2 Negotiation Strategy

The calculation mentioned above are all performed during the early
rounds of the negotiations. Meanwhile, BINGO will simply propose
its most selfish offer (the one with highest direct utility) in each
round, until the negotiations reach round N − 3. From that moment
onward, in each round n in which BINGO is the active agent, it will
pick an offer to propose from the array representing On. This ar-
ray contains optimal offers for all possible values of r1 and bn2 , but
BINGO picks the one corresponding to its actual reservation value r1
and the actual value of bn2 at that moment. BINGO will then propose
that offer, as long as its anticipated utility is greater than the direct
utility of the offer it received in the previous round. If this is not the
case, then BINGO will accept the received offer.

6.3 Optimizations

The main bottleneck for BINGO, is the large number of values it
needs to calculate. For each round of the negotiations, BINGO cal-
culates the values of the four operators Un

a , EUn
a , U

n
p , and On for all



possible values of their parameters. Luckily, however, we can make
use of a number of optimizations that reduce the number of calcula-
tions and the sizes of the arrays.

For example, we do not actually need to store the values of Un
a

in an array, because each of its values is used only once (in the cal-
culation of EUn

a ), so they can be discarded immediately after being
calculated. Secondly, instead of doing the above calculations for all
offers ω ∈ Ω, we only need to do them for all Pareto-optimal offers.
Furthermore, note that if BINGO plays the role of α2 (i.e. it is the ac-
tive agent in rounds N and N − 2) then it will never use the optimal
offers calculated for round N − 3, so BINGO can already stop its
calculations after round N − 2. Finally, we do not need to calculate
EUN−3

a , UN−3
p , or ON−3 for all possible values of r1, because, as

explained at the end of Section 6.1, this would only be necessary if
we wanted to calculate EUN−4

a . So, if we stop at N − 3, then α1

only needs to calculate them for its actual reservation value r1, and
α2 does not need to calculate them at all.

Each of these optimizations were indeed implemented by us in the
agent that we used for our experiments.

6.4 Complexity

Note that for arbitrary n, the array representing EUn
a may have size

|Ω| × (K + 1)4, the array for Un
p may have size (K + 1)4 and the

array for On may have size (K + 1)3. However, using the above
optimizations, plus the fact that BINGO does not calculate these ar-
rays for rounds earlier than N − 3, and the fact that for some rounds
n ≥ N − 3 these operators do not depend on all parameters (e.g.
Un in general depends on all 5 parameters, but UN−1 only depends
on ω, r1 and r2, as we see from Eq. (5)), we note that the largest
array is EUN−3

a with size |Ω̂| × (K + 1)3, where Ω̂ is the set of
Pareto-optimal offers. So, we conclude:

Observation 1. BINGO has a worst-case space-complexity of
O(|Ω̂| ×K3).

Regarding the time-complexity, note that calculating one value of
Un

a or Un
p is easy, because it just involves the comparison of two pre-

viously calculated numbers (see Section 4.5). So, the time it takes to
fill the entire array representing Un

p is proportional to its size, which,
with the above optimizations, is in the worst case (K + 1)3. To cal-
culate one entry of the array representing On we need to maximize
over all ω ∈ Ω̂, while it has (K + 1)3 entries. Calculating the entire
array therefore has a time-complexity of O(|Ω̂| × K3). Finally, we
see from Eq. (15) that to calculate one value of EUn

a , we need to
calculate a sum with at most K values. Since the array representing
EUn

a has at most |Ω̂|× (K+1)3 entries, the time-complexity of this
step is O(|Ω̂| ×K4).

Observation 2. BINGO has a worst-case time-complexity of
O(|Ω̂| ×K4).

7 Experiments
Unfortunately, BINGO was developed after the ANL 2024 competi-
tion had already finished, so BINGO could not participate. However,
we managed to simulate a competition that did include BINGO, by
letting BINGO negotiate against the 10 finalists of ANL 2024, as
well as against itself, under the same conditions as the competition,
and then recalculating the scores of all 11 agents by averaging over
all results of our own experiments plus the results of the actual com-
petition itself.5

5 These results were made available to us by the organizers.

Recall that the finalists of ANL 2024 are the state-of-the-art and
the only existing algorithms that BINGO can be compared to.

In the ANL 2024 finals each agent negotiated 1952 times with ev-
ery other agent, plus itself. So, in our experiments we did the same
and let BINGO play 1952 negotiations against every ANL finalist
(i.e. 10 × 1952 = 19520 negotiations) plus 1952 more negotiations
against itself. For our experiments we let the NegMas platform ran-
domly generate an entirely new negotiation scenario for every single
negotiation. We used the default settings for ANL 2024, which en-
sures that scenarios of various different types are created (e.g. split-
the-pie domains). The experiments were performed on a laptop with
13th Gen. Intel Core i7-13700H 2.40 GHz CPU and 32 GB RAM.

The results of this experiment are displayed in Table 1 (we multi-
plied the scores by 1000, for the purpose of readability). We see that
BINGO clearly outperformed all other agents. We have performed a
Welch t-test to confirm that the difference between BINGO and the
number two, Shochan, was statistically significant with p < 10−11.
We also performed an empirical game theoretical evaluation, which
suggested that, among these agents, BINGO vs. BINGO was the only
pure empirical Nash equilibrium. However, the difference between
the scores of the agents was not large enough to draw this conclusion
with sufficient statistical confidence.

Rank Agent Score ± std. err.
1 BINGO 419.6 ± 2.2
2 Shochan 399.7 ± 1.9
3 UOAgent 393.7 ± 1.7
4 AgentRenting2024 387.7 ± 1.8
5 AntiAgent 383.4 ± 2.0
6 HardChaosNegotiator 335.3 ± 1.9
7 KosAgent 332.2 ± 1.7
8 Nayesian2 313.4 ± 1.6
9 CARCAgent 304.7 ± 1.6

10 BidBot 253.6 ± 1.5
11 AgentNyan 249.7 ± 1.8

Table 1. Outcome of a tournament between all finalists of ANAC 2024, plus
BINGO.

8 Discussion
The main open question is to what extent the belief-update rule de-
fined by Eqs. (2) and (3) is realistic. The problem with this model is
that if, in some round n, agent α1 calculates its optimal offer ω∗n as
a function of its reservation value r1, then it might be possible for
α2 to invert this calculation and deduce the exact value of r1 from
ω∗n. In fact, we know that for split-the-pie scenarios this is indeed
possible in round N − 1, because BINGO would propose an offer
with utility 1

2
+ 1

2
r1, from which α2 can easily deduce the value

of r1. In that case, however, it does not matter because in round N
agent α2 cannot use that information anymore anyway. Furthermore,
according to Theorem 3, in round N − 2, agent α1 cannot deduce
any information from the optimal offer at all, beyond what is already
encoded in our belief-update rule. However, for more general scenar-
ios, it remains an open question to what extent the strategy employed
by BINGO leaks information about its reservation value, and to what
extent such information can be exploited.
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